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Biomimetic studies employing well-characterized small-molecule
heme/Cu complexes have been aimed at shedding light on funda-
mental aspects of dioxygen chemistry of porphyrinate-iron(II)-
copper(I) assemblies.1,2 Such investigations are inspired by the pres-
ence of a heme a3-CuB binuclear active site in heme-copper oxi-
dases (such as cytochromec oxidase) which catalyze the four-
electron/four-proton reduction of O2.1,3-5 The first spectroscopically
observable intermediate is a heme-O2 adduct (a FeIII-O2

- moiety)
which undergoes a reductive O-O cleavage assisted by electron
transfer (ET) from CuIB. Calculations suggest ET may proceed
through an iron(III)-(hydro)peroxo moiety (which may interact
with CuII

B) where O-O cleavage leads to subsequent CuII
B binding

of a water/hydroxide O atom derived from O2.1,6

In this report, we describe a system which mimicks the initial
O2 binding to the heme, followed by interaction with the neighbor-
ing copper(I) ion to give a heme-peroxo-copper product. The
tridentate copper chelate employed effects considerable O-O bond
weakening of the O2-derived peroxo ligand, and a newµ-η2:η2 (side-
on to both heme and copper) structural type forms.

The binucleating ligand2L was metalated, and the resulting
complex was reduced, forming [(2L)FeIICuI]+ (1).7 Laboratory
benchtop reactions with dioxygen at-80 °C in CH2Cl2/6%EtCN
demonstrate the immediate transformation of1 (λmax, 426, 530 nm)8

to [(2L)FeIII -(O2
2-)-CuII)]+ (3) (λmax, 419, 488, 544, 575 nm),8

formulated as a heme-peroxo-copper complex, Scheme 1.1H
NMR spectroscopy (-90 °C, acetone-d6) reveals that3 has the
distinctive characteristics of anS ) 2 system, with the high-spin
iron(III) center strongly magnetically coupled to CuII through a
peroxo bridge.9,10 Consistent with this are pyrrole resonances at
110 ppm, and diagnostic9,10 upfield and downfield copper-ligand
hydrogen resonances (e.g., at-31, -27, -11, -8, 29, 37, and 39
ppm), characteristic of theS ) 2 spin system.11

Resonance Raman spectroscopic investigation of3 confirms the
peroxo assignment and rules out the presence of ferryl-oxo (Fed
O) and Fe-O-Cu entities. A single O-O stretching frequency is
observed at 747 cm-1 (∆(18O2) ) -40 cm-1) (Figure 1).1,12 In a
16O-18O mixed isotope experiment (Figure 1) a single band is
observed at 730 cm-1, between the16O-16O and18O-18O stretching
bands. The very lowν(O-O) and the absence of a splitting of the
730 cm-1 band are indicative of a symmetrical binding of the
peroxide group in a side-onµ-η2:η2 geometry; see also further
discussion below.

Formation of3 from reaction of1 with O2 in CH2Cl2/6%EtCN
was monitored by low-temperature UV-vis stopped-flow spec-
troscopy.7 Rapid generation of an intermediate, formulated as

superoxo complex [(2L)FeIII-(O2
-)‚‚‚CuI(NCEt)]+ (2) (λmax ) 544

nm), is observed at-105 °C (Scheme 1,k1 ) 5.23( 0.09× 104

M-1 s-1). The UV-vis spectrum of the closely related dioxygen
adduct [(F8)FeIII (O2

-)]13 in CH2Cl2/6%EtCN is essentially the
same10 {andν(O-O) ) 1178 cm-1 in THF}.10 Our description of
2 is further supported by the knowledge that copper(I) complexes
with the bis(2-(2-pyridyl)ethyl)amine moiety (as found here in2L)
are known tonot react with O2 in nitrile solvents.10 Intramolecular
reaction of copper(I) with the superoxo moiety to produce peroxo
complex3 occurs withk2 ) 2.74 ( 0.04× 101 s-1 at -105 °C.

X-ray absorption spectroscopic studies also support a side-on/
side-on peroxo-ligand binding structure in [(2L)FeIII-(O2

2-)-CuII)]+

(3).7 Copper K-edge EXAFS is most consistent with a five-
coordinate metal center with two N scatterers at 2.028(7) Å, 2 O
scatterers at 1.898(7) Å (as expected for CuII-Operoxodistances),12
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Figure 1. Resonance Raman spectra of3, formed by the oxygenation of
1 with 16O2 (A), a scrambled isotope gas containing 25%16O2, 50%16O-
18O, and 25%18O2 (B), and18O2 (C). Difference spectra are also shown.
All spectra were obtained at 90 K with 413 nm excitation.10
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and one longer N scatterer at 2.171(12) Å. A well-ordered outer-
sphere Fe scatterer is also found at 3.62(1) Å.7 This distance is
close in line with those known from EXAFS studies ofµ-η2:η2-
peroxo dicopper(II) moieties found in synthetically derived com-
plexes,14,15 as well as in oxy-hemocyanin, a copper-containing O2

carrier protein.16,17 The iron center K-edge EXAFS fits to either a
five- or six-coordinate metal center with four N(pyrrole) scatterers
at ∼2.1 Å and one or two O at∼1.9 Å.7 Unfortunately, the
Cu‚‚‚Fe vector could not be reliably located at the Fe edge due to
the multitude of outer-sphere scattering pathways.18 An analysis
of the preedge feature, which corresponds to an Fe(1s)f Fe(3d)
transition, also suggests a side-on peroxo coordination to iron. In
3, this feature at 7113.2(2) eV is 2-4 times weaker and∼1.5 eV
lower in energy than those found in five-coordinate (P)FeIII 13

complexes with nominalC4V symmetry.19,20 However, this weak
preedge feature resembles that of [(F8)FeIII (O2

2-)]-,7,13,21 which
contains a side-on (η2) bound peroxo ligand.

Side-on peroxo binding to a heme iron(III) moiety has been
recently observed in the crystallographically characterized heme-
copper assembly [(TMP)FeIII -(O2

2-)-(5MeTPA)CuII]+ (4);22 this
has an overallµ-η2:η1-peroxo coordination, with end-on ligation
to the copper with a tetradentate chelate, Chart 1. However, we
formulate3 as having a newµ-η2:η2 side-on/side-on structure, Chart
1. This is supported by the EXAFS spectroscopic analysis com-
parisons and the16O-18O resonance Raman data. Peroxo-
dicopper(II) structures withµ-η2:η2 ligation occur when using
tridentate (or bidentate) nitrogen chelates.12 They possess consider-
ably diminished O-O stretching frequencies compared to end-on
bound µ-1,2-peroxo-dicopper(II) complexes which form with
tetradentate chelates (Chart 1).12,23Yet, 4 andη2-peroxo ferric heme
complexes [(P)FeIII -(O2

2-)]- (5) possessν(O-O) ≈ 800 cm-1

(Chart 1).22,24The significantly reduced O-O stretching frequency
and weaker O-O bond in [(2L)FeIII -(O2

2-)-CuII)]+ (3) must be
due to the imposed tridentate copper ligand environment, strongly
preferring a side-on copper peroxo binding (Chart 1).

In conclusion, a reduced FeII-CuI heme-copper complex, with
new heterobinucleating ligand2L, reacts with dioxygen to give a

heme-superoxo and then an FeIII-(O2
2-)-CuII product. The latter

possesses an O-O bond stretching which is 40-to-60 cm-1 lower
compared to those of eight other known heme-peroxo-copper
complexes possessing tetradentate ligands for copper.1,25,26 This
result is the consequence of the tridentate copper chelate employed
(within 2L), which stronglyprefers a side-on peroxo ligation and
which is well-known to weaken the peroxide O-O bond.23 While
peroxo-bridged complex3 possesses an Fe‚‚‚Cu distance (∼3.6 Å)
that is not likely to occur in heme-copper oxidases, new insights
into how reductive O-O cleavage can be facilitated as a function
of Fe-peroxo-Cu structure will be derived from future investiga-
tions, most likely employing a tridentate chelate for copper.
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H.-w.; Moënne-Loccoz, P.; Incarvito, C. D.; Rheingold, A. L.; Honecker,
M.; Kaderli, S.; Zuberbu¨hler, A. D. Proc. Natl. Acad. Sci. U.S.A.2003,
100, 3623-3628.

(11) A solution state magnetic measurement (-90 °C) is also consistent with
the S) 2 spin-state assignment,µeff ) 5.3 µB

(12) Mirica, L. M.; Ottenwaelder, X.; Stack, T. D. P.Chem. ReV. 2004, 104,
1013-1045.

(13) P) porphyrinate, F8 ) tetrakis(2,6-difluorophenyl)porphyrinate.
(14) Blackburn, N. J.; Strange, R. W.; Farooq, A.; Haka, M. S.; Karlin, K. D.

J. Am. Chem. Soc.1988, 110, 4263-4272.
(15) Pidcock, E.; DeBeer, S.; Obias, H. V.; Hedman, B.; Hodgson, K. O.;

Karlin, K. D.; Solomon, E. I.J. Am. Chem. Soc.1999, 121, 1870-1878.
(16) Co, M. S.; Hodgson, K. O.; Eccles, T. K.; Lontie, R. J.J. Am. Chem.

Soc.1981, 103, 984-986.
(17) Brown, J. M.; Power, L.; Kincaid, B.; Larrabee, J. A.; Spiro, T. G.J. Am.

Chem. Soc.1980, 102, 4210-4216.
(18) A Cu‚‚‚Fe vector at 3.59(2) Å could be included in the fits; however, this

did not lead to a statistically better or worse refinement.
(19) Five-coordinate Fe porphyrin oxo and chloro complexes display an

enhanced Fe(1s)f Fe(3d) transition because of the strong axial interaction
along the molecularz-axis, which allows for 4p mixing into the d-manifold,
and hence a “less disallowed” transition.

(20) Westre, T. E.; Kennepohl, P.; DeWitt, J. G.; Hedman, B.; Hodgson, K.
O.; Solomon, E. I.J. Am. Chem. Soc.1997, 119, 6297-6314.

(21) Chufán, E. E.; Karlin, K. D.J. Am Chem. Soc.2003, 125, 16160-16161.
(22) Chishiro, T.; Shimazaki, Y.; Tani, F.; Tachi, Y.; Naruta, Y.; Karasawa,

S.; Hayami, S.; Maeda, Y.Angew. Chem., Int. Ed.2003, 42, 2788-2791.
(23) Solomon, E. I.; Tuczek, F.; Root, D. E.; Brown, C. A.Chem. ReV. 1994,

94, 827-856.
(24) Selke, M.; Sisemore, M. F.; Valentine, J. S.J. Am. Chem. Soc.1996,

118, 2008-2012.
(25) Liu, J. G.; Naruta, Y.; Tani, F.; Chishiro, T.; Tachi, Y.Chem. Commun.

2004, 120-121.
(26) It is worth noting that the O-O strech in the O2 adduct of a five-coordinate

heme with tridentate TACN/Cu is only ca. 10 cm-1 higher than that in
3.27

(27) Collman, J. P.; Herrmann, P. C.; Boitrel, B.; Zhang, X.; Eberspacher, T.
A.; Fu, L. J. Am. Chem. Soc.1994, 106, 9783-9784.

JA045941G

Chart 1

C O M M U N I C A T I O N S

J. AM. CHEM. SOC. 9 VOL. 126, NO. 40, 2004 12717


